Hybrid Decision Tree Learners with Alternative Leaf Classifiers: An Empirical Study

نویسندگان

  • Alexander K. Seewald
  • Johann Petrak
  • Gerhard Widmer
چکیده

There has been surprisingly little research so far that systematically investigated the possibility of constructing hybrid learning algorithms by simple local modifications to decision tree learners. In this paper we analyze three variants of a C4.5-style learner, introducing alternative leaf models (Naive Bayes, IBI, and multi-response linear regression, respectively) which can replace the original C4.5 leaf nodes during reduced error post-pruning. We empirically show that these simple modifications can improve upon the performance of the original decision tree algorithm and even upon both constituent algorithms. We see this as a step towards the construction of learners that locally optimize their bias for different regions of the instance space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel hybrid method for vocal fold pathology diagnosis based on russian language

In this paper, first, an initial feature vector for vocal fold pathology diagnosis is proposed. Then, for optimizing the initial feature vector, a genetic algorithm is proposed. Some experiments are carried out for evaluating and comparing the classification accuracies which are obtained by the use of the different classifiers (ensemble of decision tree, discriminant analysis and K-nearest neig...

متن کامل

Empirical analysis of support vector machine ensemble classifiers

Ensemble classification – combining the results of a set of base learners – has received much attention in the machine learning community and has demonstrated promising capabilities in improving classification accuracy. Compared with neural network or decision tree ensembles, there is no comprehensive empirical research in support vector machine (SVM) ensembles. To fill this void, this paper an...

متن کامل

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

An Empirical and Formal Analysis of Decision Trees for Ranking

Decision trees are known to be good classifiers but less good rankers. A few methods have been proposed to improve their performance in terms of AUC, along with first empirical evidence showing their effectiveness. The goal of this paper is twofold. First, by replicating and extending previous empirical studies, we not only improve the understanding of earlier results but also correct implicit ...

متن کامل

A Hybrid Decision Support Tool - Using Ensemble of Classifiers

In decision support systems a classification problem can be solved by employing one of several methods such as different types of artificial neural networks, decision trees, bayesian classifiers, etc. However, it may happen that certain parts of instances’ space are better predicting by one method than the others. Thus, the decision of which particular method to choose is a complicated problem....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001